
Go, tasks and dataflow from Athena

Sébastien Binet

2011-11-22

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 1 / 40

Introduction

Moore’s law ceased to provide the traditional single-threaded
performance increases

I clock-frequency wall of 2003
I still deliver increases in transistor density

multicore systems become the norm
need to “go parallel” to get scalability

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 2 / 40

In a C++ world. . .

parallel programming in C++ is doable:
I C/C++ “locking + threads” (pthreads, WinThreads)

F excellent performance
F good generality
F relatively low productivity

I multi-threaded applications. . .
F hard to get right
F hard to keep right
F hard to keep efficient and optimized across releases

I multi-process applications. . .
F à la AthenaMP/GaudiMP
F leverage fork+COW on GNU/Linux
F event-level based parallelism

Parallel programming in C++ is doable,
but no panacea

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 3 / 40

In a C++ world. . .

in C++03, we have libraries to help with parallel programming
I boost::lambda
I boost::MPL
I boost::thread
I Threading/Array Building Blocks (TBB/ArBB)
I Concurrent Collections (CnC)
I OpenMP
I . . .

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 4 / 40

In a C++11 world. . .

in C++11, we get:
I λ functions (and a new syntax to define them)
I std::thread,
I std::future,
I std::promise

Helps taming the beast
... at the price of sprinkling templates everywhere...

... and complicating further a not so simple language...

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 5 / 40

In a C++11 world. . .

yay! for C++11, but old problems are still there. . .

build scalability
I templates
I headers system
I still no module system (WG21 - N2073)

F maybe in the next Technical Report ?

code distribution
I no CPAN like readily available infrastructure (and cross-platform)

for C++
I remember ROOT/BOOT ? (CHEP-06)

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 6 / 40

Time for a new language ?

“Successful new languages build on existing languages
and where possible, support legacy software. C++ grew our
of C. java grew out of C++. To the programmer, they are
all one continuous family of C languages.” (T. Mattson)

notable exception (which confirms the rule): python

Can we have a language:
as easy as python,
as fast (or nearly as fast) as C/C++/FORTRAN,
with none of the deficiencies of C++,
and is multicore/manycore friendly ?

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 7 / 40

Why not Go ?
golang.org

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 8 / 40

http://golang.org

Elements of go

obligatory hello world example. . .

package main
import "fmt"
func main() {

fmt.Println("Hello, World")
}

http://golang.org
Thursday, July 22, 2010

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 9 / 40

Elements of go - II

founding fathers:
I Russ Cox, Robert Griesemer, Ian Lance Taylor
I Rob Pike, Ken Thompson

concurrent, compiled
garbage collected
an open-source general programming language
best of both ‘worlds’:

I feel of a dynamic language
F limited verbosity thanks to type inference system, map, slices

I safety of a static type system
I compiled down to machine language (so it is fast)

F goal is within 10% of C

object-oriented (but w/o classes), builtin reflection
first-class functions with closures
duck-typing à la python

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 10 / 40

Elements of go - III
2 open source compilers:

gc, modeled after the C compiler infrastructure from Plan9
I fast compilation
I more naive optimizations

gccgo, front-end to GCC
I reasonnably fast compilation
I good optimizations
I not as good as gc for concurrency (goroutines multiplexing)

Supported architectures:

linux 32/64
darwin 32/64
ARM
win 32 (win 64 on the way)
FreeBSD, OpenBSD, Plan9, Solaris: WIP

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 11 / 40

Go concurrent

goroutines

a function executing concurrently as other goroutines in the
same address space
starting a goroutine is done with the go keyword

I go myfct(arg1, arg2)

growable stack
I lightweight threads
I starts with a few kB, grows (and shrinks) as needed

F now, also available in GCC 4.6 (thanks to the GCC-Go front-end)
I no stack overflow

goroutines can be multiplexed onto multiple real OS threads
I only available (for now) with the gc compiler
I gccgo should get this feature pretty soon (TM)

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 12 / 40

Go concurrent - II

channels

provide (type safe) communication and synchronization

// create a channel of mytype
my_chan := make(chan mytype)
my_chan <- some_data // sending data
some_data = <- my_chan // receiving data

send and receive are atomic

"Do not communicate by sharing memory; instead,
share memory by communicating"

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 13 / 40

Go concurrent with ng-go-gaudi

very minimal implementation of Gaudi in Go:
I appmgr
I evtproc
I datastoresvc
I algorithm, messages, tools, services, properties
I simple JSON output stream
I simple go bytestream (gob) output stream
I simple test algorithms (adder, counter, ...)

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 14 / 40

Go concurrent - III
package evtproc

import "gaudi/kernel"

// --- evt state ---

type evtstate struct {

idx int

sc kernel.Error

data kernel.DataStore

}

// --- evt processor ---

type evtproc struct {

kernel.Service

algs []kernel.IAlgorithm

nworkers int

}

func (self *evtproc)

NextEvent(evtmax int) kernel.Error {

if self.nworkers > 1 {

return self.mp_NextEvent(evtmax)

}

return self.seq_NextEvent(evtmax)

}

1

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 15 / 40

Go concurrent - IV
import "gaudi/kernel"

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {
// ... setup event server ...
in_queue, out_queue, quit := start_evt_server(self.nworkers)
for i := 0; i < evtmax; i++ {

in_queue <- new_evtstate(i)
}

for evt := range out_queue {
if !evt.sc.IsSuccess() {

n_fails++
}
n_processed++
if n_processed == evtmax {

quit <- true
close(out_queue)
break

}
}
if n_fails != 0 {

return kernel.StatusCode(1)
}

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 16 / 40

Go concurrent - V

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

start_evt_server := func(nworkers int) (in_evt_queue,

out_evt_queue chan *evtstate,

quit chan bool) {

in_evt_queue = make(chan *evtstate, nworkers)

out_evt_queue = make(chan *evtstate)

quit = make(chan bool)

go serve_evts(in_evt_queue, out_evt_queue, quit)

return in_evt_queue, out_evt_queue, quit

}

// ...

return kernel.StatusCode(0)

}

1

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 17 / 40

Go concurrent - VI

func (self *evtproc) mp_NextEvent(evtmax int) kernel.Error {

handle := func(evt *evtstate, out_queue chan *evtstate) {

self.MsgInfo("nextEvent[%v]...\n", evt.idx)

evt.sc = self.ExecuteEvent(evt)

out_queue <- evt

}

serve_evts := func(in_evt_queue, out_evt_queue chan *evtstate,

quit chan bool) {

for {

select {

case ievt := <-in_evt_queue:

go handle(ievt, out_evt_queue)

case <-quit:

return

}

}

}

// ...

return kernel.StatusCode(0)

}

1

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 18 / 40

Go concurrent - VII

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 19 / 40

ng-go-gaudi - concurrent event loop

a concurrent event loop in a few lines
same pattern than in AthenaMP

I but with goroutines rather than multiple forked processes
I also modified slightly the main Algorithm API to make the

event context explicit:

package kernel

type IAlgorithm interface {
Initialize() Error
Execute(ctx IEvtCtx) Error
Finalize() Error

}

package testalg

import "gaudi/kernel"

type myalg struct {

kernel.Algorithm

}

func (self *myalg)

Execute(ctx kernel.IEvtCtx) kernel.Error {

store := self.EvtStore(ctx)

store.Put("foo", 42)

return kernel.StatusCode(0)

}

1

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 20 / 40

Handling I/O

implement an asynchronous output stream service
I JSON backend (easier for validation)
I Gob backend (binary Go specific data format)

commit of data is performed by a dedicated goroutine
data is transfered from the ‘worker’ goroutine to the I/O
goroutine via channels

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 21 / 40

Handling I/O - interfaces

package kernel

/// handle to a concurrent output stream
type IOutputStream interface {

/// writes (and possibly commit) data to the stream
Write(data interface{}) Error

/// closes and flushes the output stream
Close() Error

/// returns the name of the output stream (ie: URI)
Name() string

/// returns the file-descriptor associated to that output stream
Fd() int

}

/// interface to a concurrent output stream server
type IOutputStreamSvc interface {

/// returns a new output stream
NewOutputStream(stream_name string) IOutputStream

}

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 22 / 40

A simple jobo.py example

create 500 adder algorithms, 500 dumper algorithms
process 10000 events, spawn off 5000 concurrent workers

app.props.EvtMax = 10000

app.props.OutputLevel = 1

app.svcs += Svc("gaudi/kernel/evtproc:evtproc",

"evt-proc",

OutputLevel=Lvl.INFO,

NbrWorkers=5000)

app.svcs += Svc("gaudi/kernel/datastore:datastoresvc", "evt-store")

app.svcs += Svc("gaudi/kernel/datastore:datastoresvc", "det-store")

for i in xrange(500):

app.algs += Alg("gaudi/tests/pkg2:alg_adder",

"addr--%04i" % i,

SimpleCounter="my_counter")

app.algs += Alg("gaudi/tests/pkg2:alg_dumper",

"dump--%04i" % i,

SimpleCounter="my_counter",

ExpectedValue=i+1)

1

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 23 / 40

Results

0 2 4 6 8 10 12
cores

40

60

80

100

120

140

160

180

200

220

e
v
e
n
t

p
ro

ce
ss

in
g
 r

a
te

 (
H

z)

event processing rate

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 24 / 40

Investigating sub-event parallelism

extracted list of algorithms from Athena reconstruction
extracted list of dependencies

I which algorithm produces which container(s)
I which algorithm reads which container(s)
I infer a dependency graph in terms of algorithm dependencies

F NOT in terms of containers
F algorithm is the elementary chunk of sequential work

extracted CPU timings from the same reconstruction job
I averaged over 50 events, first event discarded

inject into a mockup framework of the framework

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 25 / 40

Investigating sub-event parallelism - II

// closure to re-initialize dependency-graph scheduler
// state and datastore content
reinit_fct := func() {

// re-init depg
for k, _ := range depg {

depg[k] = make(chan int, 1)
}
// re-init store
for k, _ := range store {

store[k] = nil
}

}

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 26 / 40

Investigating sub-event parallelism - III

for ievt := 0; ievt < *g_evtmax; ievt++ {
var seq sync.WaitGroup
seq.Add(len(algs))
for i, _ := range algs {

go func(ievt, ialg int) {
a := algs[ialg]
if err := a.Execute(ievt); err != nil {

panic(err)
}
seq.Done()

}(ievt, i)
}
seq.Wait() // <-- barrier
reinit_fct()

}
Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 27 / 40

Investigating sub-event parallelism - IV

func (a *alg) Execute(ctx int) error {
for _, dep := range a.deps {

fmt.Printf(
":: [%s] waiting for [%s] (evt: %d)...\n",
a.name, dep, ctx)

v := <-a.depg[dep]
a.depg[dep] <- v

}

// simulate work...
<-time.After(int64(a.sleep * 1e9))

// tell dep-graph scheduler we are done
a.depg[a.name] <- 1
return nil

} Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 28 / 40

(very preliminary) results

::: flat-sequence :::

::: nprocs: 0
real 13m22.236s
user 0m0.861s
sys 0m0.635s

::: nprocs: 16
real 13m23.110s
user 0m1.031s
sys 0m0.932s

::: parallel-sequence :::

::: nprocs: 0
real 4m50.205s
user 0m1.876s
sys 0m1.541s

::: nprocs: 16
real 4m49.637s
user 0m1.847s
sys 0m1.519s

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 29 / 40

Non-elements of Go

no dynamic libraries (frown upon)
no dynamic loading (yet)

I but can either rely on separate processes
F IPC is made easy via the netchan package

I or rebuild executables on the fly
F compilation of Go code is fast
F even faster than FORTRAN and/or C

no templates/generics
I still open issue
I looking for the proper Go -friendly design

no operator overloading

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 30 / 40

Go from anywhere to everywhere

code compilation and distribution are (de facto) standardized
put your code on some repository

I bitbucket, launchpad, googlecode, github, . . .
check out, compile and install in one go with goinstall:

I goinstall bitbucket.org/binet/igo
I no root access required
I automatically handle dependencies

goinstall -able packages are listed on the dashboard:
I godashboard.appspot.com

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 31 / 40

http://godashboard.appspot.com

Go and C/C++
Interfacing with C:

done with the CGo foreign function interface
#include the header file to the C library to be wrapped
access the C types and functions under the artificial “C” package

package myclib
// #include <stdio.h>
// #include <stdlib.h>
import "C"
import "unsafe"

func foo(s string) {
c_str := C.CString(s) // create a C string from a Go one
C.fputs(c_str, C.stdout)
C.free(unsafe.Pointer(c_str))

}
Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 32 / 40

Go and C/C++

Interfacing with C++:

a bit more involved
uses SWIG

I you write the SWIG interface file for the library to be wrapped
I SWIG will generate the C stub functions
I which can then be called using the CGo machinery
I the Go files doing so are automatically generated as well

handles overloading, multiple inheritance
allows to provide a Go implementation for a C++ abstract class

Problem

SWIG doesn’t understand all of C++03
e.g. can’t parse TObject.h

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 33 / 40

Go and FORTRAN

Two cases:

lucky enough to wrap “legacy” Fortran 03 code with the ISO
C interface:

I just use CGo

wrapping legacy F77 code:
I write the C interface code
I use CGo to call this interface code

examples:
I http://bitbucket.org/binet/go-hepevt
I http://bitbucket.org/binet/go-herwig

no automatic press-button solution
I although there is no technical blocker to write such a thing
I this has been done for python (e.g.: fwrap)

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 34 / 40

http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig

Go and ROOT

step 1 of evil plan for (HENP) world domination:
I Go bindings to ROOT

http://bitbucket.org/binet/go-croot
I hand written CGo bindings to a hand written library exposing a C

interface to (a subset of) ROOT
F TFile, TTree/TChain
F Reflex, Cint
F TRandom

I handles automatic conversion of Go structs into their C
counter-part

I and vice versa
F two-way conversion is done by connecting the C++ introspection

library (Reflex) with its Go counter-part (the reflect package)

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 35 / 40

http://bitbucket.org/binet/go-croot

Go and ROOT

running the ROOT TTree example, in C++, via the C API and
through go-croot over 10000000 events:

29.04s user 1.03s system 86% cpu 34.83 total (C++)
29.12s user 1.09s system 85% cpu 35.48 total (CRoot)
44.83s user 1.24s system 87% cpu 54.36 total (go-croot)

$ uname -a
Linux farnsworth 3.0-ARCH #1 SMP PREEMPT
x86_64 Intel(R) Core(TM)2 Duo
CPU T9400 @ 2.53GHz GenuineIntel GNU/Linux

additional overhead w.r.t. CRoot
different calling conventions (b/w C and Go) need to be handled
Note: for such loopy-code, using GCC-Go would be better

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 36 / 40

Conclusions
Can Go address the (non-) multicore problems of yesterday ?

yes:
I productivity (dev cycle of a scripting language)
I build scalability (package system)
I deployment (goinstall)
I support for “legacy” C/C++/Fortran software (cgo+swig)

Can Go address the multicore issues of tomorrow ?
yes:

I easier to write concurrent code with the builtin abstractions
(goroutines, channels)

I easier to have efficient concurrent code (stack management)
I still have to actually write efficient concurrent code, though. . .

F work partitioning, load balancing, . . .
I cloud-enabled: runnable on AppEngine (and its open source

cousin)
but: no such thing as a magic wand for multicores/manycores

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 37 / 40

Prospects - what’s missing in ng-go-gaudi ?

backport sub-event concurrency event loop into ng-go-gaudi
use actual C++ components via cgo from ng-go-gaudi
implement more dataflow use cases (i/o bound, cpu bound, . . .)
test dataflow with CMS data

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 38 / 40

Prospects - what’s missing in Go ?

better support for C++ libraries
I building on ROOT C++ dictionary infrastructure

F now using GCC-Xml + a modified version of genreflex
F tomorrow using LLVM/CLang

I automatically generate the Go bindings

bind more HEP libraries ?
provide a Go interpreter ?

I bitbucket.org/binet/igo

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 39 / 40

http://bitbucket.org/binet/igo

Resources

golang.org
root.cern.ch
swig.org
godashboard.appspot.com
bitbucket.org/binet/go-hepevt
bitbucket.org/binet/go-herwig
bitbucket.org/binet/go-croot
bitbucket.org/binet/ng-go-gaudi
fwrap
LLVM
CLang

Sébastien Binet (LAL) Go, tasks and dataflow from Athena 2011-11-22 40 / 40

http://golang.org
http://root.cern.ch
http://www.swig.org/
http://godashboard.appspot.com
http://bitbucket.org/binet/go-hepevt
http://bitbucket.org/binet/go-herwig
http://bitbucket.org/binet/go-croot
http://bitbucket.org/binet/ng-go-gaudi
http://fortrancython.wordpress.com/
http://llvm.org/
http://clang.llvm.org/

	go in HEP

